

PCM2900 PCM2902

SLES035A – MARCH 2002 – REVISED MAY 2002

STEREO AUDIO CODEC WITH USB INTERFACE, SINGLE-ENDED ANALOG INPUT/OUTPUT AND S/PDIF

FEATURES

- PCM2900: Without S/PDIF
- PCM2902: With S/PDIF
- On-Chip USB Interface:
 - With Full-Speed Transceivers
 - Fully Compliant With USB 1.1 Specification
 - Certified by USB-IF
 - Partially Programmable Descriptors⁽¹⁾
 - USB Adaptive Mode for Playback
 - USB Asynchronous Mode for Record
 - Bus Powered
- 16-Bit Delta Sigma ADC and DAC
- Sampling Rate:
 - DAC: 32, 44.1, 48 kHz
 - ADC: 8, 11.025, 16, 22.05, 32, 44.1, 48 kHz
- On-Chip Clock Generator:
 - With Single 12-MHz Clock Source
- Single Power Supply: 5 V TYP (V_{BUS})
- Stereo ADC Analog Performance at V_{BUS} = 5 V:
 - THD+N = 0.01%
 - SNR = 89 dB
 - Dynamic Range = 89 dB
 - Decimation Digital Filter
 - Passband Ripple = ± 0.05 dB
 - Stopband Attenuation = -65 dB
 - Single-Ended Voltage Input
 - Antialiasing Filter Included
 - Digital LCF Included
- Stereo DAC Analog Performance at V_{BUS} = 5 V:
 - THD+N = 0.005%
 - SNR = 96 dB

- Dynamic Range = 93 dB
- Oversampling Digital Filter
- Passband Ripple = ± 0.1 dB
- Stopband Attenuation = -43 dB
- Single-Ended Voltage Output
- Analog LPF Included
- Multifunctions:
 - HID Volume ± Control and Mute Control
 Suspend Flag
- Package: 28-Pin SSOP, Lead-Free Product

APPLICATIONS

- USB Audio Speaker
- USB Headset
- USB Monitor
- USB Audio Interface Box

DESCRIPTION

The PCM2900/2902 is Texas Instruments single-chip USB stereo audio codec with USB 1.1 compliant full-speed protocol controller and S/PDIF (only PCM2902). The USB protocol controller works with no software code, but the USB descriptors can be modified in some areas (ex. vendor ID/product ID). The PCM2900/2902 employs a USB data tracking system named sampling period adaptive controlled tracking (SpAct[™]), which is TI's audio clock recovery architecture. The on-chip analog PLLs with the SpAct enables independent playback and record sampling rates with low clock jitters.

Clocked by SpAct

Input signal is reclocked with the patented sampling period adaptive controlled tracking system for maximum quality.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

⁽¹⁾The descriptor can be modified by changing a mask.

PCM2900 PCM2902

SLES035A – MARCH 2002 – REVISED MAY 2002

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGING ORDERING INFORMATION

	PCM2900							
PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER(1)	TRANSPORT MEDIA		
DOMOGOOF		20000	2500 40 0500	DOMODODE	PCM2900E	Rails		
PCM2900E	SSOP-28	28DB	–25°C to 85°C	PCM2900E	PCM2900E/2K	Tape and reel		

(1) Models with a slash (/) are available only in tape and reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces of PCM2900E/2K gets a single 2000 piece tape and reel.

	PCM2902								
PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA			
DOMOGOOF		0000		DOMOGOODE	PCM2902E	Rails			
PCM2902E	SSOP-28	28DB	–25°C to 85°C	PCM2902E	PCM2902E/2K	Tape and reel			

(1) Models with a slash (/) are available only in tape and reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces of PCM2902E/2K gets a single 2000 piece tape and reel.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

		PCM2900/PCM2902	UNIT		
Supply voltage, VBUS		6.5	V		
Ground voltage differe	nces, AGNDC, AGNDP, AGNDX, DGND, DGNDU	±0.1	V		
Distribution	gital input voltage		V		
Digital input voltage	D+, D–, HID0, HID1, HID2, XTI, XTO, DOUT, SSPND	–0.3 to (V _{DDI} + 0.3)	V		
Anglestender	VINL, VINR, VCOM, VOUTR, VOUTL	-0.3 to (V _{CCCI} + 0.3)	V		
Analog input voltage	VCCCI, VCCP1I, VCCP2I, VCCXI, VDDI	-0.3 to 4	V		
Input current (any pins	Input current (any pins except supplies)		mA		
Ambient temperature	underbias	-40 to 125	°C		
Storage temperature,	Tstg	-55 to 150	°C		
Junction temperature	TJ	150	°C		
Lead temperature (sole	Lead temperature (soldering)				
Package temperature	Package temperature (IR reflow, peak) 260				

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

all specifications at $T_A = 25^{\circ}C$, $V_{BUS} = 5$ V, $f_S = 44.1$ kHz, $f_{IN} = 1$ kHz, 16-bit data, unless otherwise noted⁽¹⁾

	PARAME	ſER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Digita	IInput/Output		1					
	Host interface		Apply USB Revision 1.1, full speed					
	Audio data format		USB isochronous data format					
Input I	Logic		·					
		D+, D-		2		3.3		
 .	l link lauralianuturaltana	XTI, HID0, HID1, and HID2		2.52		3.3	VDC	
VIH	High-level input voltage	SEL0, SEL1		2		5.25	VDC	
		DIN, PCM2902		2.52		5.25		
		D+, D-				0.8		
.,	Level and the set of the set	XTI, HID0, HID1, and HID2				0.9		
VIL	Low-level input voltage	SEL0, SEL1				0.8	VDC	
		DIN, PCM2902				0.9		
ΙΗ		D+, D–, XTI, SEL0, SEL1	V _{IN} = 3.3 V			±10		
	High-level input current	HID0, HID1, and HID2	V _{IN} = 3.3 V		50	80	μA	
		DIN, PCM2902	V _{IN} = 3.3 V		65	100		
		D+, D–, XTI, SEL0, SEL1	V _{IN} = 0 V			±10		
۱ _{۱L}	Low-level input current	HID0, HID1, and HID2	V _{IN} = 0 V			±10	μA	
		DIN, PCM2902	V _{IN} = 0 V			±10		
Outpu	it Logic			•				
		D+, D–		2.8				
∨он	High-level output voltage	DOUT, PCM2902	I _{OH} = -4 mA	2.8			VDC	
		SSPND	$I_{OH} = -2 \text{ mA}$	2.8			-	
		D+, D-				0.3		
VOL	Low-level output voltage	DOUT, PCM2902	I _{OL} = 4 mA			0.5	VDC	
		SSPND	I _{OL} = 2 mA			0.5		
Clock	Frequency							
	Input clock frequency, XTI			11.994	12	12.006	MHz	
ADCC	haracteristics							
	Resolution				8, 16		bits	
	Audio data channel				1, 2		chann	

(1) f_{IN} = 1 kHz, using Audio Precision System II, RMS mode with 20-kHz LPF, 400-Hz HPF in calculation.

SLES035A - MARCH 2002 - REVISED MAY 2002

ELECTRICAL CHARACTERISTICS

all specifications at $T_A = 25^{\circ}C$, $V_{BUS} = 5 V$, $f_S = 44.1 \text{ kHz}$, $f_{IN} = 1 \text{ kHz}$, 16-bit data, unless otherwise noted⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	ГҮР МА	X UNIT
ClockFr	requency	1	1		
fS	Samplingfrequency		8,11.025,16,22	2.05, 32, 44.1, 4	8 kHz
DC Accu	uracy	-			
	Gain mismatch channel-to-channel			±1 ±	5 %FSR
	Gainerror			±2 ±1	0 %FSR
	Bipolar zero error			±0	%FSR
Dynami	cPerformance ⁽¹⁾	· ·			
		V _{CCCI} = 3.67 V, V _{IN} = -0.5 dB ⁽²⁾	0.0	0.02	%
THD+N	Total harmonic distortion plus noise	$V_{IN} = -0.5 dB^{(3)}$	0	.1%	
		$V_{IN} = -60 \text{ dB}$		5%	
	Dynamic range	A-weighted	81	89	dB
SNR	Signal-to-noiseratio	A-weighted	81	89	dB
	Channelseparation		80	85	dB
Analog I	Input	·	•		• •
	Inputvoltage			0.6	V _{p-p}
	inputvoltage		VC	CCI	vp–p
	Centervoltage			0.5	V
	-		VC	CCI	
	Inputimpedance			30	kΩ
	Antialiasing filter frequency response	–3 dB		150	kHz
		f _{IN} = 20 kHz		0.08	dB
Digital F	ilter Performance		1		
	Passband			0.454 f	S Hz
	Stopband		0.583 fS		Hz
	Passband ripple			±0.0	05 dB
	Stopbandattenuation		-65		dB
td	Delay time		17.	4/fS	S
	LCF frequency response	-3 dB	0.07	78fS	MHz
DACCha	aracteristics				
	Resolution		8	, 16	bits
	Audio data channel			1,2	channe
ClockFr	requency				
fs	Samplingfrequency		32, 44	1.1, 48	kHz

(1) f_{IN} = 1 kHz, using Audio Precision System II, RMS mode with 20-kHz LPF, 400-Hz HPF in calculation.

(2) Using external voltage regulator for V_{CCCI} (as shown in Figure 7, using with REG103xA-A

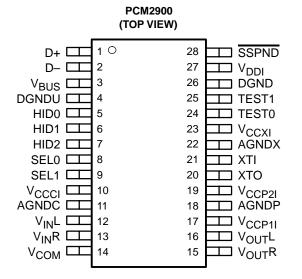
(3) Using internal voltage regulator for V_{CCCI} (as shown in Figure 9)

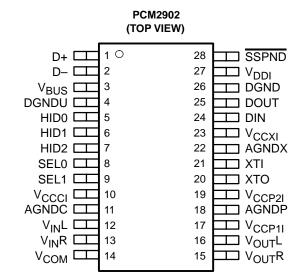
ELECTRICAL CHARACTERISTICS

all specifications at $T_A = 25^{\circ}C$, $V_{BUS} = 5 V$, $f_S = 44.1 \text{ kHz}$, $f_{IN} = 1 \text{ kHz}$, 16-bit data, unless otherwise noted⁽¹⁾

	PARAMETI	ER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Accu	ıracy						
	Gain mismatch channel-to-char	inel			±1	±5	%FSR
	Gain error				±2	±10	%FSR
	Bipolar zero error				±2		%FSR
Dynamio	cPerformance ₍₁₎						
	—		$V_{OUT} = 0 dB$		0.005%	0.016%	
THD+N	Total harmonic distortion plus no	DISE	$V_{OUT} = -60 \text{ dB}$		3%		
	Dynamic range		EIAJ, A-weighted	87	93		dB
SNR	Signal-to-noiseratio		EIAJ, A-weighted	90	96		dB
	Channelseparation			86	92		dB
Analog	Output		1				
Vo	Outputvoltage				0.6		V
VO	Output voltage				VCCCI		V _{p-p}
	Centervoltage				0.5		V
					VCCCI		
	Loadimpedance LPF frequency response		AC coupling	10			kΩ
			–3 dB		250		kHz
		f = 20 kHz		-0.03		dB	
	Digital filter performance						
	Passband				0.445 fs	Hz	
	Stopband			0.555			Hz
				fS		10.4	15
	Passband ripple					±0.1	dB
	Stopbandattenuation			-43			dB
t _d	Delay time				14.3 fg		S
	upply Requirements		1				
VBUS	Voltagerange			4.35	5	5.25	VDC
	Supply current		ADC, DAC operation		56	67	mA
			Suspend mode ⁽²⁾		210		μA
PD	Powerdissipation		ADC, DAC operation		280	352	mW
5		1	Suspend mode ⁽²⁾		1.05		mW
	Internal power supply voltage	VCCCI, VCCP1I, VCCP2I, VCCXI, and VDDI		3.25	3.35	3.5	VDC
Tempera	atureRange						
	Operation temperature			-25		85	°C
θJA	Thermalresistance		28-pin SSOP		100		°C/W

(1) f_{OUT} = 1 kHz, using Audio Precision System II, RMS mode with 20-kHz LPF, 400-Hz HPF.


(2) Under USB suspend state


PCM2900 PCM2902

SLES035A - MARCH 2002 - REVISED MAY 2002

PIN ASSIGNMENTS

PCM2900 Terminal Functions

TERMINAL						
NAME	NO.	I/O	DESCRIPTION			
SSPND	28	0	Suspend flag, active low (Low: suspend, High: operational)			
AGNDC	11	-	nalog ground for codec			
AGNDP	18	-	nalog ground for PLL			
AGNDX	22	-	Analog ground for oscillator			
D-	2	I/O	USB differential input/output minus ⁽¹⁾			
D+	1	I/O	USB differential input/output plus ⁽¹⁾			
DGND	26	-	Digital ground			
DGNDU	4	-	Digital ground for USB transceiver			
HID0	5	I	HID key state input (mute), active high(3)			
HID1	6	I	HID key state input (volume up), active high ⁽³⁾			
HID2	7	I	HID key state input (volume down), active high ⁽³⁾			
SEL0	8	I	Must be set to high ⁽⁵⁾			
SEL1	9	Ι	Must be set to high ⁽⁵⁾			
TEST0	24	I	Test pin, must be connected to GND			
TEST1	25	0	Test pin, must be left open			
VBUS	3	I	Connect to USB power (V _{BUS})			
VCCCI	10	-	Internal analog power supply for codec ⁽⁴⁾			
VCCP1I	17	-	Internal analog power supply for PLL ⁽⁴⁾			
VCCP2I	19	-	Internal analog power supply for PLL ⁽⁴⁾			
VCCXI	23	-	Internal analog power supply for oscillator ⁽⁴⁾			
VCOM	14	-	Common for ADC/DAC (V _{CCCI} /2) ⁽⁴⁾			
V _{DDI}	27	-	Internal digital power supply ⁽⁴⁾			
VINL	12	I	ADC analog input for L-channel			
V _{IN} R	13	I	ADC analog input for R-channel			
VOUTL	16	0	DAC analog output for L-channel			
VOUTR	15	0	DAC analog output for R-channel			
XTI	21	I	Crystal oscillator input ⁽²⁾			
XTO	20	0	Crystal oscillator output			

(1) LV-TTL level

(2) 3.3-V CMOS level input

(3) 3.3-VCMOS level input with internal pulldown. This pin informs the PC of serviceable control signals such as mute, volume up, or volume down, which has no connection with the internal DAC or ADC directly. See the *volume control* and *mute control* section.

(4) Connect a decouple capacitor to GND

(5) TTL Schmitt trigger, 5 V tolerant

PCM2900 PCM2902

SLES035A - MARCH 2002 - REVISED MAY 2002

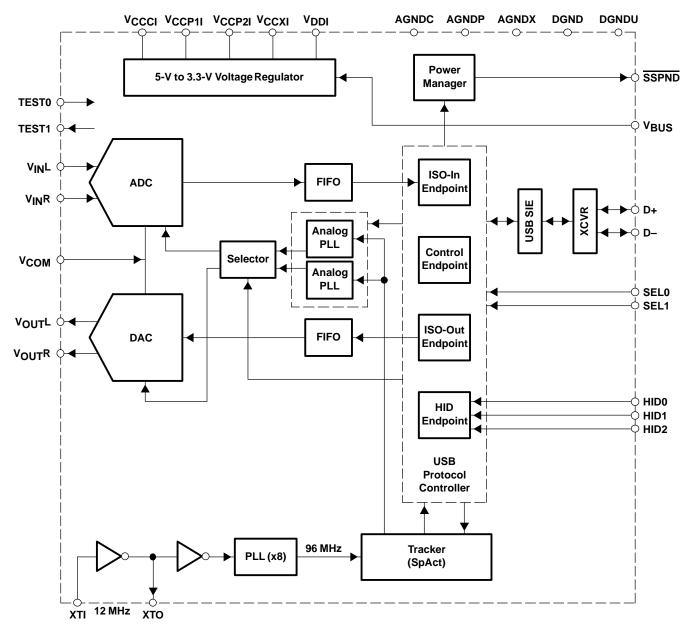
PCM2902 Terminal Functions

TERMINAL				
NAME	PIN	I/O	DESCRIPTIONS	
SSPND	28	0	Suspend flag, active low (Low: suspend, High: operational)	
AGNDC	11	-	nalog ground for codec	
AGNDP	18	-	Analog ground for PLL	
AGNDX	22	-	Analog ground for oscillator	
D-	2	I/O	USB differential input/output minus(1)	
D+	1	I/O	USB differential input/output plus ⁽¹⁾	
DGND	26	-	Digital ground	
DGNDU	4	-	Digital ground for USB transceiver	
DIN	24	Ι	S/PDIF input ⁽⁵⁾	
DOUT	25	0	S/PDIF output	
HID0	5	Ι	HID key state input (mute), active high ⁽³⁾	
HID1	6	Ι	HID key state input (volume up), active high ⁽³⁾	
HID2	7	Ι	HID key state input (volume down), active high ⁽³⁾	
SEL0	8	Ι	Must be set to high ⁽⁶⁾	
SEL1	9	Ι	Must be set to high ⁽⁶⁾	
VBUS	3	Ι	Connect to USB power (VBUS)	
VCCCI	10	-	Internal analog power supply for $codec^{(4)}$	
VCCP1I	17	-	Internal analog power supply for PLL ⁽⁴⁾	
VCCP2I	19	-	Internal analog power supply for PLL ⁽⁴⁾	
VCCXI	23	_	Internal analog power supply for oscillator ⁽⁴⁾	
VCOM	14	-	Common for ADC/DAC (V _{CCCI} /2) ⁽⁴⁾	
VDDI	27	-	Internal digital power supply(4)	
VINL	12	Ι	ADC analog input for L-channel	
V _{IN} R	13	I	ADC analog input for R-channel	
VOUTL	16	0	DAC analog output for L-channel	
VOUTR	15	0	DAC Analog output for R-channel	
XTI	21	I	Crystal oscillator input ⁽²⁾	
ХТО	20	0	Crystal oscillator output	

(1) LV-TTL level

(2) 3.3-V CMOS level input

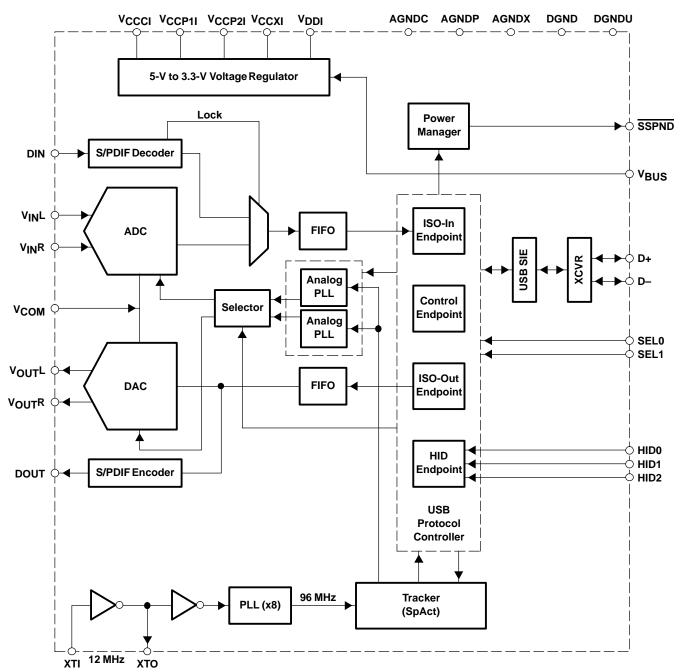
(3) 3.3-V CMOS level input with internal pulldown. This pin informs the PC of serviceable control signals such as mute, volume up, or volume down, which has no connection with the internal DAC or ADC directly. See the *volume control* and *mute control* section.


(4) Connect a decouple capacitor to GND

(5) 3.3-V CMOS level input with internal pulldown, 5 V tolerant

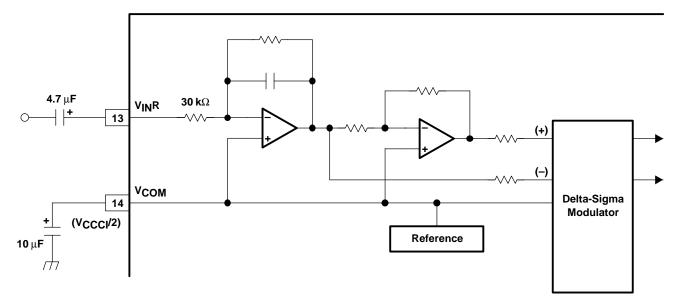
(6) TTL Schmitt trigger, 5 V tolerant

PCM2900 FUNCTIONAL BLOCK DIAGRAM

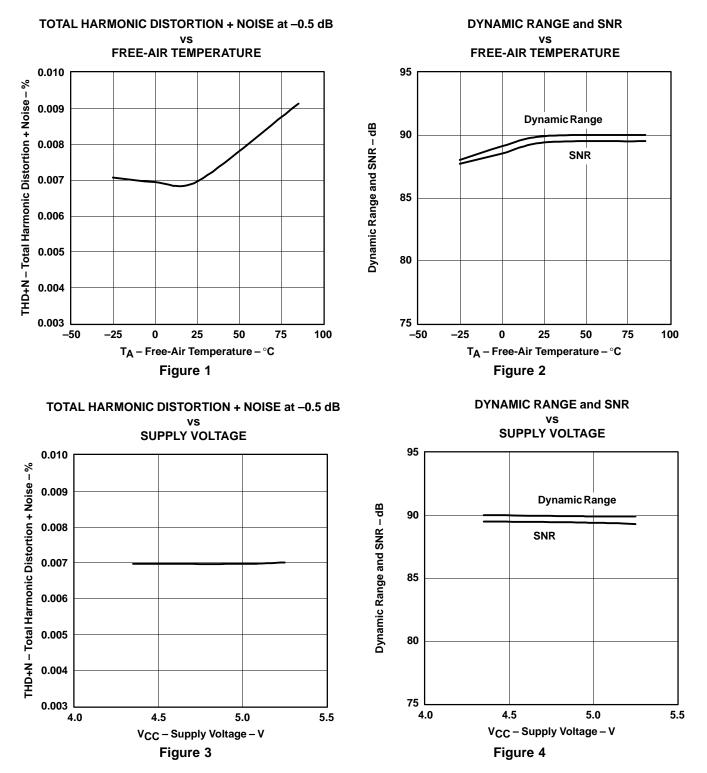


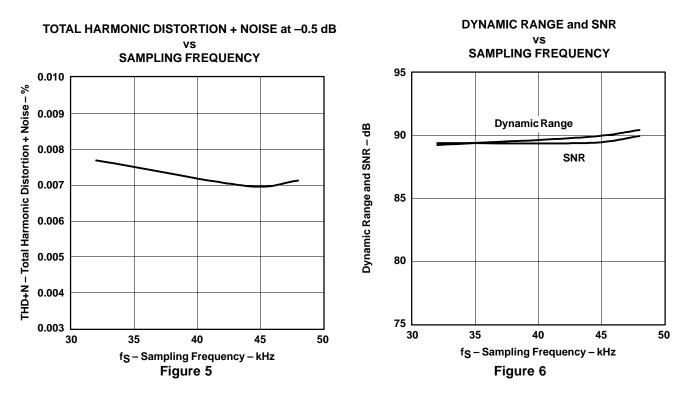
PCM2900 PCM2902

SLES035A - MARCH 2002 - REVISED MAY 2002

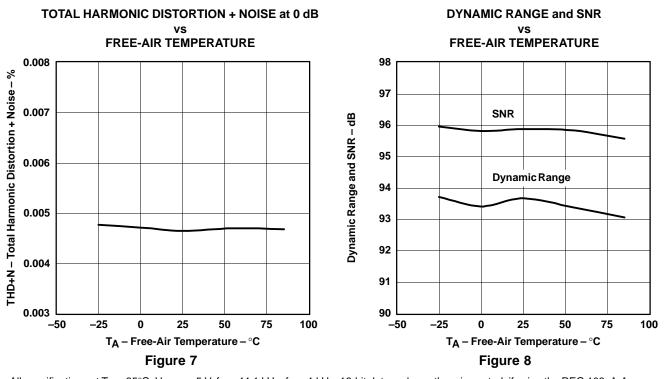


PCM2902 FUNCTIONAL BLOCK DIAGRAM

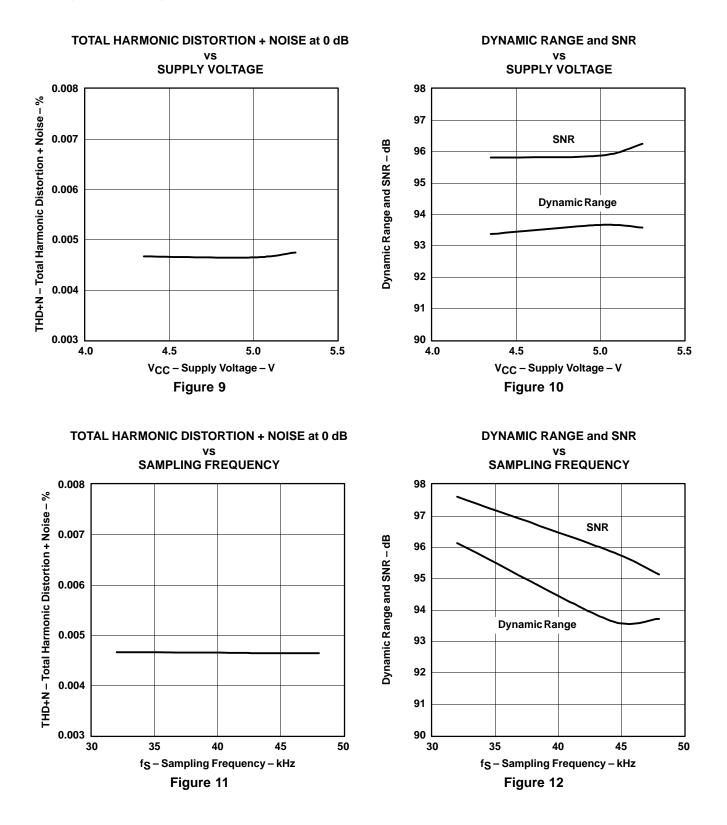

PCM2900/2902 BLOCK DIAGRAM OF ANALOG FRONT-END (RIGHT CHANNEL)


TYPICAL CHARACTERISTICS

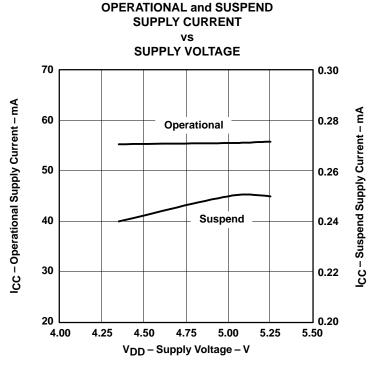
ADC



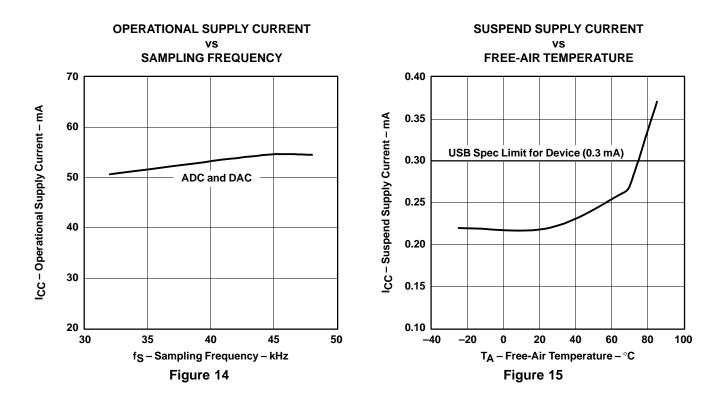
ADC (CONTINUED)



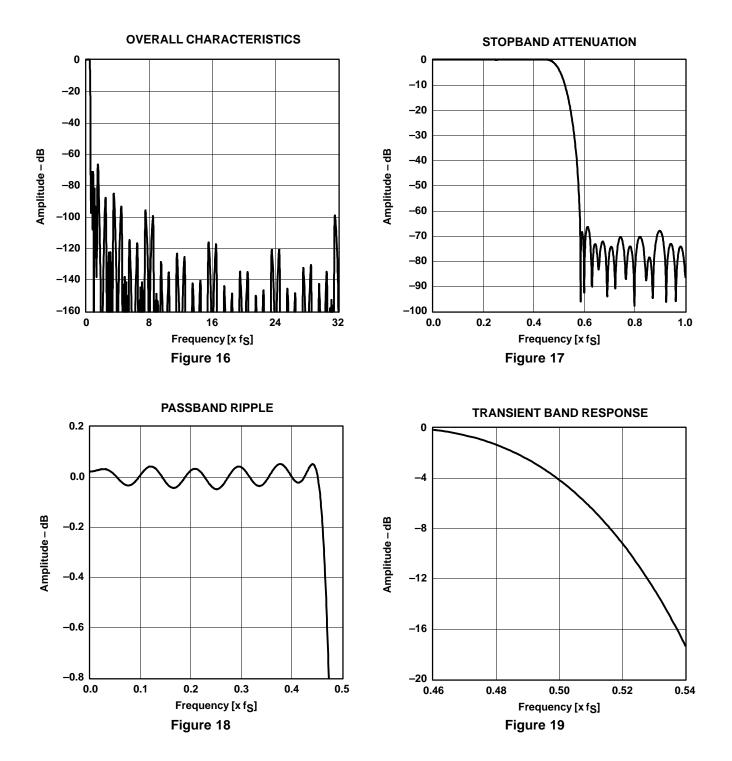
PCM2900 PCM2902 SLES035A – MARCH 2002 – REVISED MAY 2002



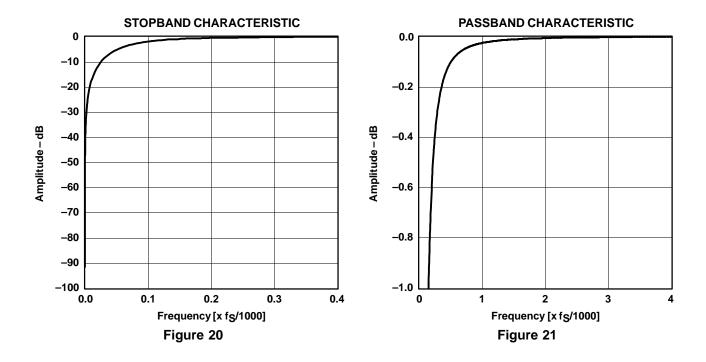
DAC (CONTINUED)



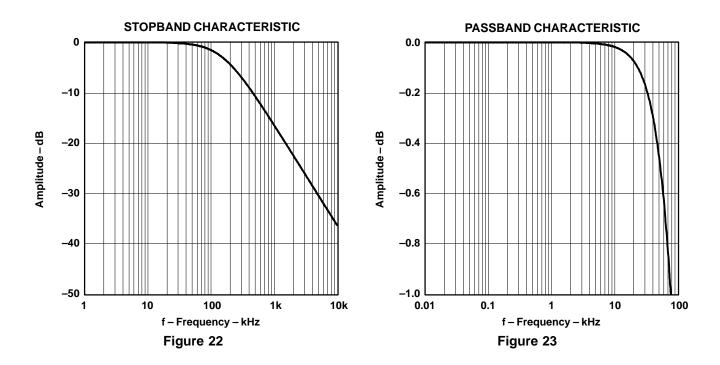
SUPPLY CURRENT



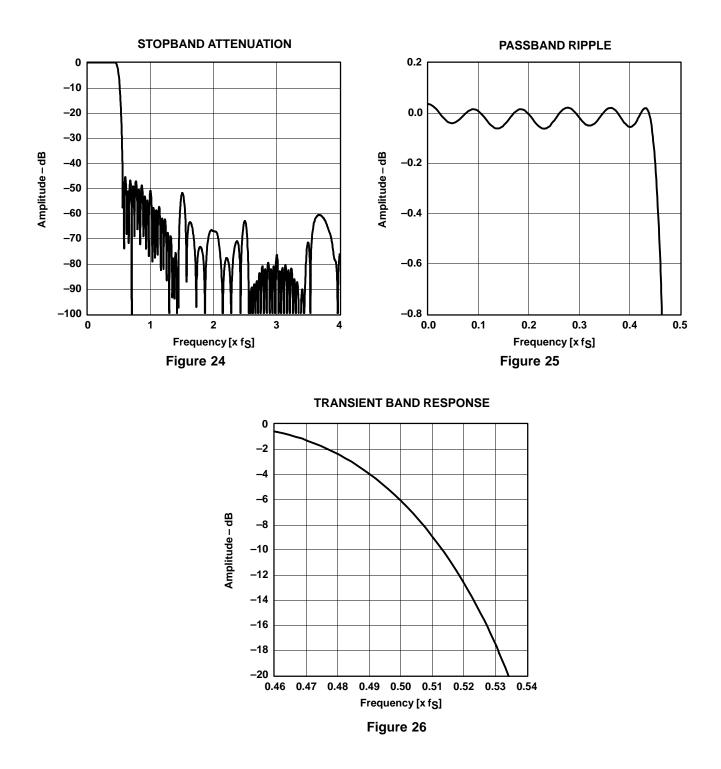
PCM2900 PCM2902 SLES035A – MARCH 2002 – REVISED MAY 2002



ADC DIGITAL DECIMATION FILTER FREQUENCY RESPONSE



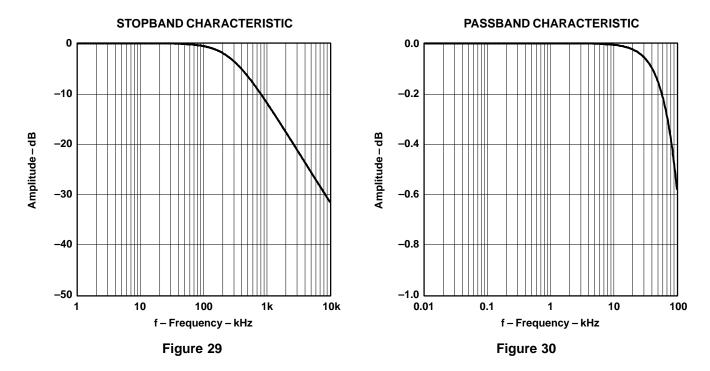
ADC DIGITAL HIGH PASS FILTER FREQUENCY RESPONSE



ADC ANALOG ANTIALIASING FILTER FREQUENCY RESPONSE



ADC DIGITAL INTERPOLATION FILTER FREQUENCY RESPONSE



DAC ANALOG FIR FILTER FREQUENCY RESPONSE

DAC ANALOG LOW PASS FILTER FREQUENCY RESPONSE

USB INTERFACE

Control data and audio data are transferred to the PCM2900/2902 via D+ (pin 1) and D– (pin 2). All data to/from the PCM2900/2902 is performed in full speed. The device descriptor can be modified upon request, contact a Texas Instruments representative for details (see Table 1).

USB revision	1.1 compliant
Device class	0x00 (device defined interface level)
Device sub class	0x00 (not specified)
Device protocol	0x00 (not specified)
Max packet size for endpoint 0	8 byte
Vendor ID	0x08BB (default value, can be modified)
Product ID	0x2900 / 0x2902 (default value, can be modified)
Device release number	1.0 (0x0100)
Number of configurations	1
Vendor strings	Burr-Brown from TI (default value, can be modified)
Product strings	USB audio codec (default value, can be modified)
Serialnumber	Not supported

Table 1. Device Descriptor

The configuration descriptor can be modified upon request, contact your representative for details (see Table 2).

Table 2. Configuration Descriptor

Interface	Fourinterfaces
Power attribute	0x80 (Bus powered, no remote wakeup)
Max power	0x32 (100 mA. Default value, can be modified)

The string descriptor can be modified upon request, contact a Texas Instruments representative for details (see Table 3).

Table 3. String Descriptor

#0	0x0409	
#1	Burr-Brown from TI (default value, can be modified)	
#2	USB audio codec (default value, can be modified)	

DEVICE CONFIGURATION

Figure 31 illustrates the USB audio function topology. The PCM2900/2902 has four interfaces. Each interface is constructed by alternative settings.

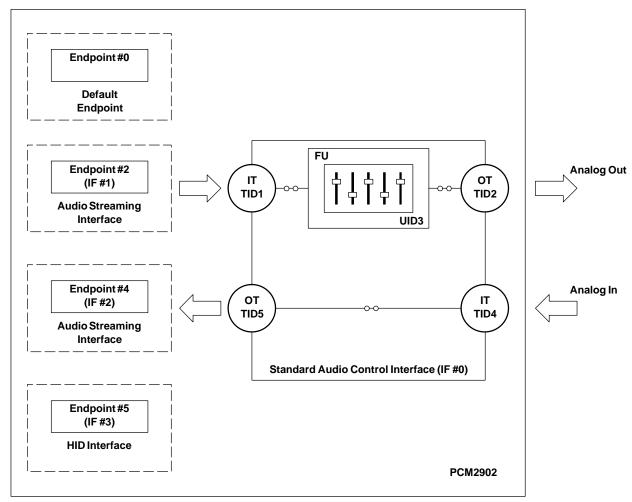


Figure 31. USB Audio Function Topology

Interface #0

Interface #0 is for the control interface. Alternative setting #0 is the only possible setting for interface #0. Alternative setting #0 describes the standard audio control interface. A terminal constructs the audio control interface. The PCM2900/2902 has five terminals as follows:

- Input terminal (IT #1) for isochronous-out stream
- Output terminal (OT #2) for audio analog output
- Feature unit (FU #3) for DAC digital attenuator
- Input terminal (IT #4) for audio analog input
- Output terminal (OT #5) for isochronous-in stream

Input terminal #1 is defined as USB stream (terminal type 0x0101). Input terminal #1 can accept 2-channel audio streams constructed by left and right channels. Output terminal #2 is defined as a speaker (terminal type 0x0301). Input terminal #4 is defined as microphon (terminal type 0x0201). Output terminal #5 is defined as a USB stream (terminal type 0x0101). Output terminal #5 can generate 2-channel audio streams constructed by left and right channels. Feature unit #3 supports the following sound control features.

- Volume control
- Mute control

The built-in digital volume controller can be manipulated by an audio class specific request from 0 dB to -64 dB in 1-dB steps. Changes are made by incrementing or decrementing by one step (1 dB) for every 1/f_S time interval until the volume level has reached the requested value. Each channel can be set for different values. The master

volume control is not supported. A request to the master volume is stalled and ignored. The built-in digital mute controller can be manipulated by audio class specific request. A master mute control request is acceptable. A request to an individual channel is stalled and ignored.

Interface #1

Interface #1 is for audio streaming data out interface. Interface #1 has the following seven alternative settings. Alternative setting #0 is the zero bandwidth setting. All other alternative settings are operational settings.

ALTERNATIVE SETTING		DATA FORMAT			SAMPLING RATE (kHz)
00		ZeroBandwidth			
01	16 bit	Stereo	2s complement (PCM)	Adaptive	32, 44.1, 48
02	16 bit	Mono	2s complement (PCM)	Adaptive	32, 44.1, 48
03	8 bit	Stereo	2s complement (PCM)	Adaptive	32, 44.1, 48
04	8 bit	Mono	2s complement (PCM)	Adaptive	32, 44.1, 48
05	8 bit	Stereo	Offset binary (PCM8)	Adaptive	32, 44.1, 48
06	8 bit	Mono	Offset binary (PCM8)	Adaptive	32, 44.1, 48

Interface #2

Interface #2 is for the audio streaming data in the interface. Interface #2 has the following 15 alternative settings. Alternative setting #0 is the zero bandwidth setting. All other alternative settings are operational settings.

ALTERNATIVE SETTING	DATA FORMAT			TRANSFER MODE	SAMPLING RATE (kHz)
00	ZeroBandwidth				
01	16 bit	Stereo	2s complement (PCM)	Asynchronous	48
02	16 bit	Mono	2s complement (PCM)	Asynchronous	48
03	16 bit	Stereo	2s complement (PCM)	Asynchronous	44.1
04	16 bit	Mono	2s complement (PCM)	Asynchronous	44.1
05	16 bit	Stereo	2s complement (PCM)	Asynchronous	32
06	16 bit	Mono	2s complement (PCM)	Asynchronous	32
07	16 bit	Stereo	2s complement (PCM)	Asynchronous	22.05
08	16 bit	Mono	2s complement (PCM)	Asynchronous	22.05
09	16 bit	Stereo	2s complement (PCM)	Asynchronous	16
0A	16 bit	Mono	2s complement (PCM)	Asynchronous	16
0B	8 bit	Stereo	2s complement (PCM)	Asynchronous	16
0C	8 bit	Mono	2s complement (PCM)	Asynchronous	16
0D	8 bit	Stereo	2s complement (PCM)	Asynchronous	8
0E	8 bit	Mono	2s complement (PCM)	Asynchronous	8

Interface #3

Interface #3 is for interrupt data in interface. Alternative setting #0 is the only possible setting for interface #3. Interface #3 constructs the HID consumer control device. Interface #3 reports the following three key statuses.

- Mute (0xE209)
- Volume up (0xE909)
- Volume down (0xEA09)

Endpoints

The PCM2900/2902 has the following four endpoints.

- Control endpoint (EP #0)
- Isochronous-out audio data stream endpoint (EP #2)
- Isochronous-in audio data stream endpoint (EP #4)
- HID endpoint (EP #5)

The control endpoint is a default endpoint. The control endpoint is used to control all functions of the PCM2900/2902 by the standard USB request and USB audio class specific request from the host. The isochronous-out audio data stream endpoint is an audio sink endpoint, which receives the PCM audio data. The isochronous-out audio data stream endpoint accepts the adaptive transfer mode. The isochronous-in audio data stream endpoint, which transmits the PCM audio data. The isochronous-in audio data stream endpoint uses asynchronous transfer mode. The HID endpoint is an interrupt-in endpoint. HID endpoint reports HID0, HID1, and HID2 pin status in every 32 ms.

The human interface device (HID) pins are defined as consumer control devices. The HID function is designed as an independent endpoint from both isochronous-in and -out endpoints. This means that the result of affection for the HID operation is depending on the host software. Typically, the HID function is affected for the primary audio-out device.

Clock and Reset

The PCM2900/2902 requires a 12-MHz (\pm 500 ppm) clock for the USB and audio function, which can be generated by a built in crystal oscillator with a 12-MHz crystal resonator. The 12-MHz crystal resonator must be connected to XTI (pin 21) and XTO (pin 20) with one high (1 M Ω) resistor and two small capacitors, which capacitance's depends on the load capacitance of the crystal resonator. The external clock can be supplied from XTI (pin 21), If the external clock is supplied, XTO (pin 20) must be left open. Because of no clock-disabling signal, it is not recommended to use the external clock supply. SSPND (pin 28) is unable to use clock disabling.

The PCM2900/2902 has an internal power-on reset circuit, which works automatically when V_{BUS} (pin 3) exceeds 2.5 V typical (2.7 V–2.2 V) and about 700 μ s is required until internal reset release.

Digital Audio Interface (PCM2902)

The PCM2902 employs both S/PDIF input and output. Isochronous–out data from the host is encoded to the S/PDIF output and the DAC analog output. Input data is selected as either S/PDIF or ADC analog input. When device detect S/PDIF input and successfully locked received data, the isochronous–out transfer data source is automatically selected from S/PDIF itself, otherwise the data source is selected to ADC analog input.

Supported Input Data (PCM2902)

The following data formats are accepted by the S/PDIF input and output. All other data formats are unable to use S/PDIF.

- 48-kHz 16-bit stereo
- 44.1-kHz 16-bit stereo
- 32-kHz 16-bit stereo

Mismatch between input data format and host command may cause unexpected results except in the following conditions.

- Record monaural format from stereo data input at the same data rate
- Record 8-bit format from 16-bit data input at the same data rate

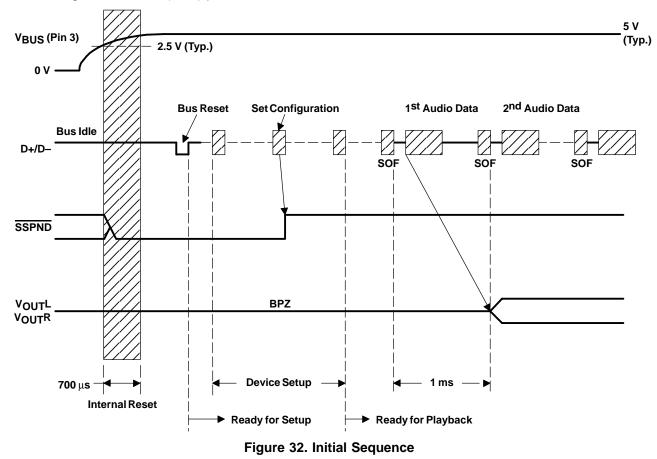
A combination between the above conditions is also accepted.

For the playback, all possible data rate source is converted to 16-bit stereo format at the same source data rate.

Copyright Management (PCM2902)

Isochronous-in data is affected by the serial copy management system (SCMS). Where receiving digital audio data that is indicated as original data in the control bit, input digital audio data transfers to the host. If the data is indicated as first generation or higher, transferred data is selected to analog input.

Digital audio data output is always encoded as original with SCMS control.


The implementation of this feature is an option for the customer. Note that it is the user's responsibility whether they implement this feature in their product or not.

INTERFACE SEQUENCE

Power On, Attach, and Play Back Sequence

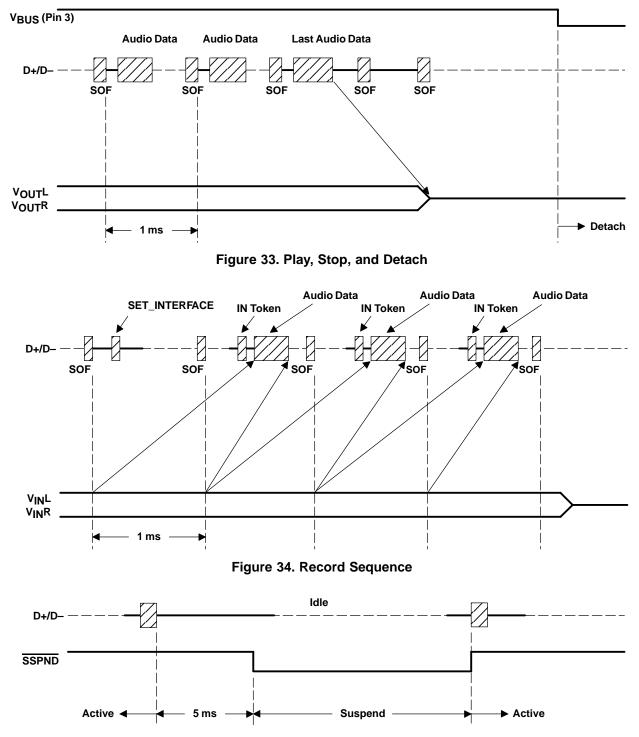
The PCM2900/2902 is ready for setup when the reset sequence has finished and the USB bus is attached. After connection has been established by setup, the PCM2900/2902 is ready to accept USB audio data. While waiting, the audio data (idle state) and analog output are set to bipolar zero (BPZ).

When receiving the audio data, the PCM2900/2902 stores the first audio packet, which contained 1-ms audio data, into the internal storage buffer. The PCM2900/2902 starts playing the audio data when detecting the following start of frame (SOF) packet.

Play, Stop, and Detach Sequence

When the host finishes or aborts the play back, the PCM2900/2902 stops playing after the last audio data has played.

Record Sequence


The PCM2900/2902 starts the audio capture into the internal memory after receiving the SET_INTERFACE command.

Suspend and Resume Sequence

The PCM2900/2902 enters the suspend state after it sees a constant idle state on the USB bus, approximately 5 ms. While the PCM2900/2902 enters the suspend state, SSPND flag (pin 28) is asserted. The PCM2900/2902 wakes up immediately when detecting the non-idle state on the USB bus.

PCM2900 PCM2902

SLES035A - MARCH 2002 - REVISED MAY 2002

XAS

STRUMENTS

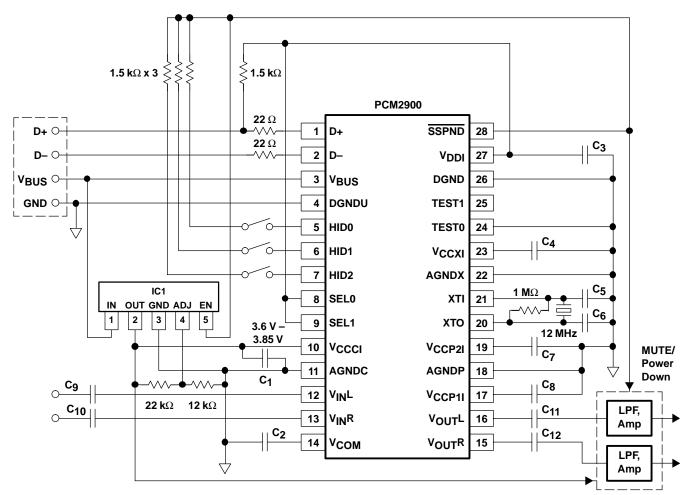

www.ti.com

Figure 35. Suspend and Resume

PCM2900 TYPICAL CIRCUIT CONNECTION 1

Figure 36 illustrates a typical circuit connection for a high performance application. The circuit illustrated is for information only. The whole board design should be considered to meet the USB specification as a USB compliant product.

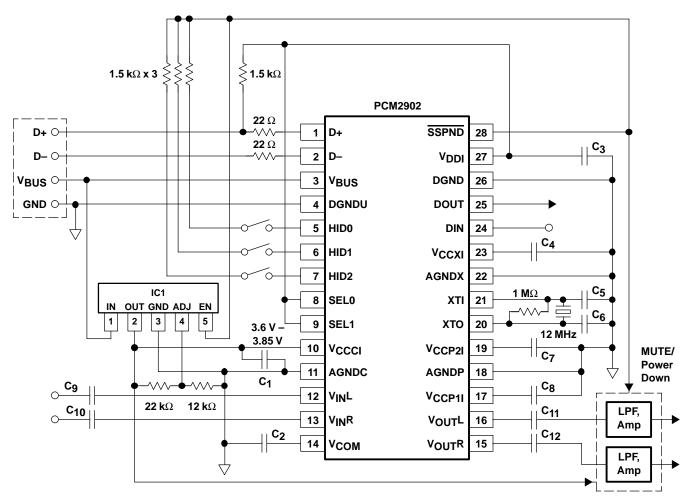
NOTE: $C_1, C_2: 10 \,\mu\text{F}$

C₃, C₄, C₇, C₈: 1 μ F (These capacitors must be less than 2 μ F)

C₅, C₆: 10 pF to 33 pF (depending on crystal resonator)

C9, C10, C11, C12: The capacitance may vary depending on design

IC1: REG103xA–A (TI) or equivalent. Analog performance may vary depending on IC1.


Figure 36. Bus-Powered Configuration for High-Performance Application

NOTE:

PCM2902 TYPICAL CIRCUIT CONNECTION 1

Figure 37 illustrates a typical circuit connection for a high performance application. The circuit illustrated is for information only. The whole board design should be considered to meet the USB specification as a USB compliant product.

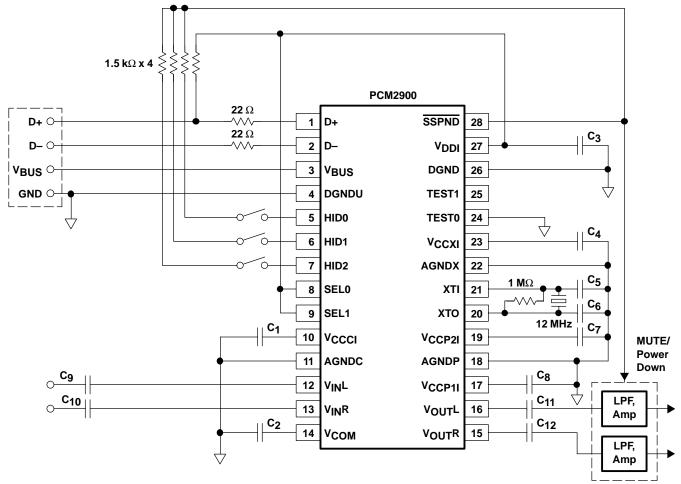
NOTE: C1, C2: 10 µF

C3, C4, C7, C8: 1 μ F (These capacitors must be less than 2 μ F)

C5, C6: 10 pF to 33 pF (depending on crystal resonator)

 C_9 , C_{10} , C_{11} , C_{12} : The capacitance may vary depending on design

IC1: REG103xA-A (TI) or equivalent. Analog performance may vary depending on IC1.


Figure 37. Bus-Powered Configuration for High-Performance Application

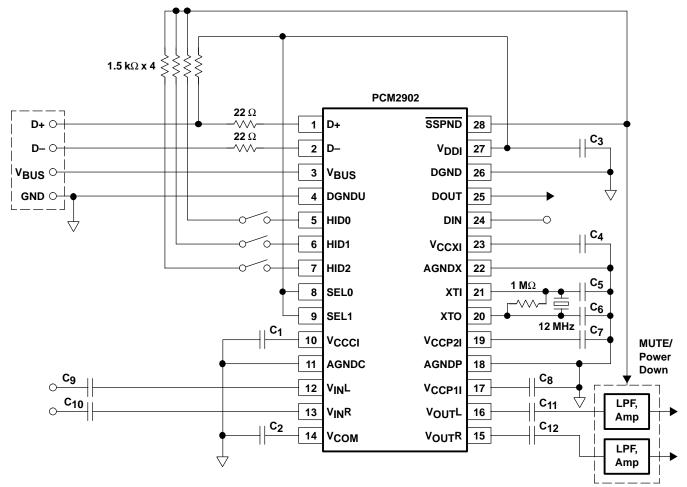
NOTE:

PCM2900 TYPICAL CIRCUIT CONNECTION 2

Figure 38 illustrates a typical circuit connection for a simple application. The circuit illustrated is for information only. The whole board design should be considered to meet the USB specification as a USB compliant product.

NOTE: C₁, C₂: 10 μF

 $\begin{array}{l} C_3, C_4, C_7, C_8: 1 \ \mu\text{F} \\ C_5, C_6: 10 \ p\text{F} \ to \ 33 \ p\text{F} \ (depending \ on \ crystal \ resonator) \\ C_9, C_{10}, C_{11}, C_{12}: The \ capacitance \ may \ vary \ depending \ on \ design \ In \ this \ case \ analog \ performance \ of \ the \ A/D \ converter \ may \ degrade. \end{array}$


Figure 38. Bus-Powered Configuration

NOTE:

PCM2902 TYPICAL CIRCUIT CONNECTION 2

Figure 39 illustrates a typical circuit connection for a simple application. The circuit illustrated is for information only. The whole board design should be considered to meet the USB specification as a USB compliant product.

NOTE: C₁, C₂: 10 μF

C₃, C₄, C₇, C₈: 1 μF

C₅, C₆: 10 pF to 33 pF (depending on crystal resonator)

C9, C10, C11, C12: The capacitance may vary depending on design

In this case analog perfomance of the A/D converter may degrade.

Figure 39. Bus-Powered Configuration

NOTE:

APPLICATION INFORMATION

OPERATING ENVIRONMENT

To get the appropriate operation, one of the following operating systems must be working on the host PC that has the USB port assured by the manufacturer. If the condition is fulfilled, the operation of the PCM2900/2902 does not depend upon the operating speed of the CPU.

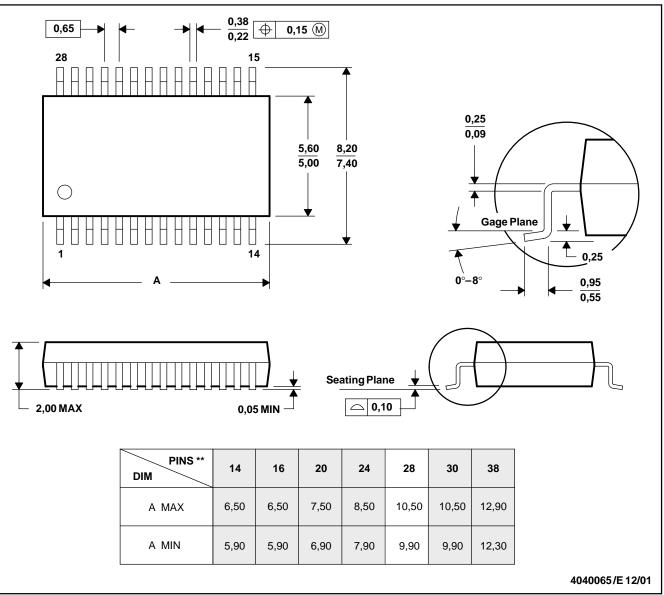
Texas Instruments has confirmed following operating environments.

- OS: Microsoft[™] Windows[™] 98/98SE/Me Japanese/English Edition
 - Microsoft[™] Windows[™] 2000 Professional Japanese/English Edition
 - Microsoft[™] Windows[™] XP Home/Professional Japanese/English Edition (For Windows[™] XP, use the latest version of the USB audio driver that is available on Windows update site)
 - Apple Computer[™] Mac OS 9.1 or later Japanese/English Edition
 - Apple Computer[™] Mac OS X 10.0 or later English Edition
 - Apple Computer[™] Mac OS X 10.1 or later Japanese Edition (For Mac OS X 10.0 Japanese Edition, plug and play does not work for USB audio device appropriately)
- PC: Following PC-AT compatible computers for above OS (OS requirement must meet)
 - Motherboard using Intel[™] 440BX or ZX chip set (using USB controller in the chip set)
 - Motherboard using Intel[™] i810 chip set (using USB controller in the chip set)
 - Motherboard using Intel[™] i815 chip set (using USB controller in the chip set)
 - Motherboard using Intel[™] i820 chip set (using USB controller in the chip set)
 - Motherboard using Intel[™] i845 chip set (using USB controller in the chip set)
 - Motherboard using Intel[™] i850 chip set (using USB controller in the chip set)
 - Motherboard using Apollo KT133 chip set (using USB controller in the chip set)
 - Motherboard using Apollo Pro plus chip set (using USB controller in the chip set)
 - Motherboard using MVP4 or MVP3 chip set (using USB controller in the chip set)
 - Motherboard using Aladdin V chip set (using USB controller in the chip set)
 - Motherboard using SiS530 or SiS559 chip set (using USB controller in the chip set)
 - Motherboard using SiS735 chip set (using USB controller in the chip set)

NOTE:

This does not mean that the operation of the PCM2900/2902 is not assured for the OS and PC except for the ones listed. The OSs and PCs for which the operation of the PCM2900/2902 was confirmed are written above.

PCM2900/2902 has been acknowledged in the USB compliance test. However, the acknowledgement is just for the PCM2900/2902 from Texas Instruments. Be careful that the acknowledgement is not for the customer's USB system using the PCM2900/2902.



MECHANICAL DATA

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

NOTES:A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated